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Abstract. In this paper we study the semiclassical limit for the A3 statistic of integrable 
systems which have a homogeneous polynomial as potential. These systems possess a scale 
invariance which provides us with the energy dependence of the statistic using the general 
expressions given by Berry. We also obtain the functional dependence of the universal 
part of the A3 statistic both for integrable and ergodic systems. We use a stationary phase 
approximation to evaluate the semiclassical limit of the level density when the dimension 
of the system is larger than one. The investigation of its validity leads to the introduction 
of a generalised perimeter term in the average level density. The fluctuating part of the 
semiclassical level density yields the semiclassical limit of the A3 statistic, which is compared 
numerically to results obtained for actual spectra. We find that the semiclassical approxima- 
tion is excellent provided the perimeter term is taken into account exactly. We also study 
the dimensional dependence of A3. For energy levels around the N t h  level above the 
ground state the position ofthe kink in the A3 statistic is essentially proportional to N ‘ d - ’ ’ ’ d .  

1. Introduction 

Recently quantum spectra of classically chaotic systems have received a considerable 
amount of attention (see Bohigas and Giannoni (1984) for a review). Both analytical 
and numerical evidence has been found that the spectral fluctuations of completely 
chaotic systems can be described by the invariant random matrix ensembles. Most 
recently, Berry (1985) was able to give a semiclassical derivation of the correct 
logarithmic dependence of the A3 statistic. This statistic is a function of L, the length 
of an interval along the spectrum in units of average level spacings. It measures the 
fluctuations of the number of quantum levels in intervals of length L. The transition 
region between completely chaotic and integrable systems has been subjected to several 
studies (Yukawa 1985, Ishikawa and Yukawa 1985, Seligman e? al 1984, 1985) but has 
not yet been fully understood. However, there is also evidence that in this case random 
matrix theory plays an important role (Seligman e? a1 1985). In this context a problem 
arose as, close to the integrable limit, the non-universal properties of the level correlation 
function are very pronounced. In particular we refer to the fact that the A3( L )  statistic 
no longer saturates after a certain value of L. This so-called ‘kink’ was first reported 
by Zirnbauer and the present authors (Seligman e? a1 1984). After that it was studied 
by Casati et a1 (1985) for the square well. In the same study they showed that even 
the nearest-neighbour spacing distribution of their Hamiltonian is non-generic (see 
also Seligman and Verbaarschot 1986a). 
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Recently, Berry (1985) explained the phenomenon of the ‘kink’ by using the 
semiclassical limit of the fluctuating part of the level density. He was able to give a 
quantitative explanation of the data of Casati et a1 (1985). However, his theory has 
not been tested for systems other than the square well. It is the objective of this paper 
to perform this task. We will concentrate on the class of separable homogeneous 
potentials. This class has the advantage that all calculations can be performed explicitly. 
We take this opportunity to make a careful analysis of the relevant stationary phase 
approximations. 

Since actual physical systems usually involve many degrees of freedom we have 
also been interested in the dimensional dependence of the non-universal properties of 
the A3 statistic. Intuitively it is clear that the position of the ‘kink’ will move to larger 
values of L when we increase the dimensionality of the system. We shall also investigate 
this surmise for the aforementioned systems. 

The organisation of this paper is as follows. In § 2 we define the model and use 
general scaling arguments to derive the energy dependence of the A3 statistic. In § 3 
we evaluate the semiclassical limit of the fluctuating part of the level density. The 
stationary phase approximation is discussed and a generalised perimeter correction to 
the average level density is derived. In § 4 we derive an explicit expression for the A3 
statistic. Numerical results are presented in § 5 and concluding remarks are made in 0 6. 

2. Scaling properties of the A3 statistic 

We consider integrable systems with a homogeneous polynomial as potential. In a 
d-dimensional space the Hamiltonian is given by 

( 2 . l a )  

where 
d 

( X I  . . , xd) = C , X f m .  ( 2 . l b )  

Hamiltonians of the form (2 .1)  have scaling properties. Solutions of the Hamilton 
equations of motion at different energies are related by a simple scale transformation 
of the coordinates and the time (Landau and Lifshitz 1967). For the WKB approximation 
to the eigenvalues E this implies that 

~ ( 2 m )  

t = l  

d 

E = 1 y,( n, + a,)’AP p = 2 m / ( m  - 1 ) .  (2 .2)  

Here, the n, are integers larger than or equal to zero and the y, and a, are constants 
to be discussed below. Equation (2 .2)  follows immediately by expressing the Hamil- 
tonian in action-angle variables. The actions along one period of a periodic trajectory 
are 

1 = 1  

The constants ai are given by 

(2 .3a )  

(2.3 b )  

where B(x ,  y )  is the beta function. In terms of the variables Zi the Hamiltonian can 
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(2.4) 

In (2.2) the values of the a, are given by 
ai = 0.5 for l<p<oo  
a,=O for p = 00 (von Neumann boundary conditions) (2.5) 

a, = 1.0 for p = oc (Dirichlet boundary conditions). 
From (2.4) one immediately deduces the W K B  approximation given in (2.2) (the 
constants y, are given by yi = a;P). At this point we want to remark that for Hamil- 
tonians with a discrete symmetry the value of ai is different from (2.5) when we consider 
only levels of one symmetry class. For instance, the Hamiltonian (2.1) is invariant 
under the parity operation. The odd and even parity states will be considered separately. 
In a one-dimensional system the even parity levels are given by 

E” = y(2n +p = y2P(n +$)P (2.6) 

E,, =y(2n+1+4)P=y2P(n+i )P .  (2.7) 

and the odd parity levels by 

We have used the fact that in a one-dimensional potential of the form (2.1) the levels 
are ordered according to the number of nodes in the wavefunction. The value of ai 
is of importance for the discussion in § 3. 

The accuracy of the W K B  approximation has been studied numerically by diagonalis- 
ing Hamiltonians of the form (2.1) in a harmonic oscillator basis. As an illustration 
we show in the second column of table 1 some eigenvalues corresponding to positive 
parity states of an x4 potential (the index of the eigenvalues is given in the first column). 
In the third column we give the W K B  approximation calculated from c ( n  (c  = 
1.172 034 0504). The agreement is very good. Analytical estimates have been given by 
Hioe et al (1978). They found that the deviation from the WKB result is of order n-’ 
in the one-dimensional case. Therefore, to leading order in n- ’  these deviations do 
not contribute to the correlations of the eigenvalues in higher-dimensional systems. 
This will become clear in § 3. In conclusion, we can use (2.2) as a starting point for 
the study of correlations of eigenvalues of Hamiltonians (2.1). 

We will restrict our study to correlations that extend over a large but in the limit 
h + 0 finite number of eigenvalues. The appropriate measure for these correlations is 

Table 1. Comparison of exact eigenvalues and their W K B  approximation for a one- 
dimensional x4 potential. 

n Exact value W K B  Value 

0 
1 
2 
5 

10 
25 
50 

100 

0.185 
1.578 
3.456 

10.694 
26.096 
86.820 

217.331 
538.577 

0.226 
1.587 
3.461 

10.697 
26.098 
86.822 

217.332 
538.577 
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the A3 statistic defined by 
L / 2 P  

A 3 ( t )  = min I d & ( N ( E  + E )  - A -  BE)’. (2.8) 

Here, N ( E )  is the integrated level density (a staircase function) and  ij is the average 
level density. The minimisation is over A and B. For the evaluation of A3 we will use 
the semiclassical approximation to the level density with inclusion of the lowest order 
quantum fluctuations. According to the work of Gutzwiller (1967) P ( E )  is given by 
(see also Berry and Mount 1972) 

P ( E ) =  h-d  6 ( E - H ) d d x d d p + h - ‘ d + ” ’ 2 ~ A J ( E ) e x p ( i S , ( E ) / h )  ( 2 . 9 ~ )  

for integrable systems and 

A B  L - ~ / 2 p  

I I 

p ( E ) = h V d  6 ( E - H )  d d x d d p + h - l z A I ( E )  exp(iS,(E)/h) (2.96) 

for ergodic systems. The sum is over all closed periodic trajectories with energy E. 
Sl(E)  is the action along one such trajectory and AJ (E)  are coefficients that can be 
derived from the properties of the classical trajectories. Note that the physical 
dimension of the amplitudes Al(E)  is different in the integrable and  ergodic cases. 
Since a number theoretic derivation of ( 2 . 9 ~ )  will be given in 0 3, we d o  not quote the 
explicit expressions for $ ( E )  and Al(E).  For the interested reader we refer to the 
work of Gutzwiller (1967, 1970, 1971) and Berry and Tabor (1977). By using the 
scaling properties of the Hamiltonian (2.1) we will derive a result for the energy 
dependence of A3( L ) .  For the study of the eigenvalue correlations in an  interval around 
E containing a finite number of eigenvalues we can make the following linear approxi- 
mation to the action: 

i J 

S , ( E + E ) = S , ( E ) + E  dS,/dE. (2.10) 
In the limit h + 0 this approximation is exact. In this limit the energy dependence of 
the smooth functions AJ(E)  is irrelevant (see Berry 1985). By changing to dimensionless 
integration variables we can write A3(L) as 

(2.11) 

Due to the minimisation the constant multiplying B can be omitted. Only the oscillating 
part of N ( E )  contributes to A 3 .  Since E is dimensionless A 3 ( L )  is a function of 
( L / 2 p h )  dSj/dE. For scaling systems the energy dependence can be derived from 
dimensional arguments only. For the relevant quantities we find the following depen- 
dence on h :  

for integrable systems 

for ergodic systems 

(2.126) 

(2.12c) 

N (  E ) - [ SIdh - d .  (2.12d) 
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[SI denotes the dimension of an action. Putting everything together results in 

A3(L) = N(E)”-”’df(L(N(E))‘i-d”d ) ( 2 . 1 3 ~ )  

for integrable systems and 

A3( L) = g(L( N (  E ) ) ( L - d ) ’ d  (2.13b) 

for ergodic systems, where f and g are functions that do not depend on h, L and 
N ( E ) .  This energy dependence in (2.13b) is consistent with the saturation value of 
the A3 statistic derived by Casati et a1 (1985) for the square well. The generalisation 
of their argument to an arbitrary scaling potential yields the same asymptotic depen- 
dence. From ( 2 . 1 3 ~ )  we also conclude that the universal part of the A3 statistic, i.e. 
the part that does not depend on N ( E ) ,  has to be linear in the integrable case. In the 
ergodic case we consider the difference A3( L )  - A3( 1). It is clear that the universal part 
of this statistic can only have a logarithmic dependence on L. Berry (1985) derived 
the asymptotic limit of A3 by using a sum rule for the amplitudes A, derived by Hannay 
and Ozorio de Almeida (1984). Up to constants this sum rule can be derived by scaling 
arguments for systems with homogeneous polynomials as a potential (Seligman and 
Verbaarschot 1986b). 

From (2.12) it is clear that an expansion in powers of h is also an expansion in 
inverse powers of N ( E ) .  

3. Semiclassical limit of the level density 

In 0 2 we have explained that the eigenvalues of Hamiltonians of the form (2.1) are 
given by the WKB approximation (2.2). Berry and Tabor (1976, 1977) have derived 
general formulae for the semiclassical level density of integrable systems. Since for 
the eigenvalues (2.2) all calculations can be carried out explicitly without loss of the 
essential features of the general case we present a derivation of the semiclassical level 
density. For simplicity we consider the two-dimensional case. The generalisation to 
arbitrary dimensions is immediate. 

The level density following from (2.2) is given by (from now on we put h = 1) 

We use the Poisson summation formula to write the level density as (see Berry and 
Tabor 1976) 

p ( E )  = lom lom dn, dn2 exp{2.rri[M,(n1 -a , )+ M2(n2- a2)11 S ( E  - ylnP - r2n$). 
MI Mz 

(3.2) 

The S function can be evaluated by transforming the ni variables to ‘polar’ coordinates 

(3.3) nf y1 = r cos’ Q n $ y 2  = r sin’ Q. 

J =2(y1y2)-‘’pp-’(r cos Q sin Q ) ” P - ~ .  

The Jacobian J of this transformation is given by 

(3.4) 
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We note that for O < p < 2  this Jacobian is zero for cp equal to zero and 7 ~ 1 2 .  The r 
integration can be carried out. This yields for the level density 

~ e x p { 2 n ~ [ M , ( ~ ) 1 ~ p ~ o s z ’ p ~ + M 2 ( ~ ) i ~ p s i n 2 ~ p ~ - a , M l - a 2 M 2  I1 . 
(3 .5)  

When both M1 and M2 are different from zero the cp  integration can be performed by 
the method of stationary phases. In the limit E + 00 the results thus obtained become 
exact. When either MI or M2 equals zero the stationary point is at the boundary of 
the integration manifold. Just at these points the Jacobian J in (3.4) is equal to zero 
for 0 < p  < 2. Moreover, for 0 < p < 2 there are two stationary points, one at zero and 
the other at ~ / 2 .  The second derivative with respect to cp  at one of these points is 
infinite for 1 < p < 2. (For billiard problems ( p  = 2), where most of these problems do 
not occur, the stationary points at the boundaries have been discussed by Richens and 
Berry (1981).)  This suggests that to make a careful analysis of this case we should not 
transform the ni variables to ‘polar’ coordinates but instead use (3.2) as a starting 
point. We will add the terms with either MI or Mz equal to zero to the term with both 
MI and M2 equal to zero. Together they define the average level density pSM( E ) .  We 
will evaluate these terms exactly. Thereby we circumvent the problems involving the 
stationary phase approximation. For pSM we obtain 

+ exp[2niM2(n2-a,)] 6 ( E  - y l n y -  y2n$’) 
M 2 f 0  

1 tc 

+ c 6(n,-ff ,-k*)-l  6 ( E - y , n Y - y 2 n 3 .  
k 2 = 0  

The integrations can be carried out easily. This yields 

where B ( x ,  y )  is the beta function. When E +CO psM(E) tends to the Thomas-Fermi 
approximation for the average level density. However, for the calculation of the 
correlation function we have to keep all terms in (3.7). We evaluate the corrections 
in leading order in Since the first two terms in (3.7) are both Riemann sums 
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that approximate the integral given by the last term, in lowest order in E - ’ / p  the 
corrections to the leading order term p-’( yl y z ) - l ’ p E Z ’ p - l B (  l /p ,  l /p)  are given by 

By inspection of the potential (2.1) one immediately concludes that for p = 2, (3.8) 
yields the perimeter term of the semiclassical level density of a square box (see Richens 
and Berry 1981, Bohigas and Giannoni 1984). One also observes that this term changes 
sign going from von Neumann boundary conditions ( a ,  = 0) to Dirichlet boundary 
conditions ( a ,  = 1). When the levels are given by the W K B  approximation ( a ,  = 0.5) 
there is no perimeter term. However, when one considers levels of a definite symmetry 
class the value of ai is no longer 0.5 (see (2.5)) and one has to take into account the 
term given in (3.8). Actually, the higher-order terms in (3 .7)  belong to the fluctuating 
part of the spectrum. It is because of the problems in calculating these terms by a 
stationary phase approximation that we interpret pSM( E )  as the average level density. 

The fluctuating part of the level density is given by the terms in (3.5) for which 
neither M I  nor M2 is equal to zero. The cp integration will be performed by the method 
of stationary phases. In this case there are no additional problems. The stationary 
point is given by 

cp (3.9) V P  s in2 /P -2  
cp = MZY, M I  y ; l / P  c0s2/P-2 

and the second derivative of the exponent at this point is equal to 

Using these results we obtain the following stationary phase approximation for the 
fluctuating part of the level density: 

This result will be the starting point of the calculation of the A3 statistic. 

final result: 
We do  not give the derivation for the d-dimensional case here but just quote the 

P o s c ( E )  = c A ,  exp(iS.M) 
M,#O 

(3.12) 

(For the definition of /3 see Berry and Tabor (1976).) For the interpretation of this 
equation in terms of periodic trajectories we refer to Berry (1985). 
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The average number of levels N (  E )  below energy E is obtained by integrating pSM 
up to E. We will express the energy E in (3.11) and (3.12) in terms of N ( E ) .  In doing 
this the additional terms given by (3.7) give rise to contributions that vanish in leading 
order in Therefore we only use the Thomas-Fermi approximation p to the level 
density to express E in N ( E ) .  In d dimensions p is given by 

The integral Id,r,s can be solved recursively: 

4. Evaluation of the A3 statistic 

In this section we evaluate the semiclassical limit of the A3 statistic for the class of 
potentials defined in (2.2). Our starting point is the expression for A3 as given by Berry 
(1985) 

The coefficients AM are given in (3.12) and T,, is defined by 

T M  = dSM/dE. (4.2) 

The function G is specific for the correlations described by A3 and is given by 

sin’ y 3(y cos y -sin y)’ 
G ( y ) = l - ~ -  

Y Y 4  
(4.3) 

After insertion of the formulae for AM and TM in (4.1) and expressing the energy E 
in N ( E )  we obtain for A,(L) 

(4.4) 

For d = 1 there are no fluctuating contributions to the level density and the A3 statistic 
is equal to its minimum value (A). For d = 2 and p = 2 (4.4) reduces to the expression 
for the square well given by Berry (1985). However, there is one difference. We have 
included the terms with either M ,  or M2 equal to zero in the average level density. 
Up to the order in we are considering, the result of Berry (1985) differs because 
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we have treated the perimeter term exactly. Berry evaluated the fluctuating part of the 
perimeter term via a stationary phase approximation. The stationary points lie on the 
boundary of the integration manifold. This yields an additional factor of 0.5 for A,w 
and a factor 0.25 for AL.  

For large values of y the function G ( y )  = 1. Therefore, the value of A3(L) saturates 
when L +  CO. From (4.4) it follows that the energy dependence of the saturation value 
is given by 

A3(w)- ( N ( E ) ) d " d - " .  (4.5) 

This result was already derived in § 2 by using scaling arguments. For the square well 
it has been given by Casati er a1 (1985). 

5. Numerical results 

In this section we discuss the numerical results. We calculate the A3 statistic for a 
sequence of eigenvalues generated by the W K B  approximation given in (2.2) and 
compare it to the analytical result given in (4.4). In the case of the W K B  eigenvalues 
we unfold the spectrum by means of the semiclassical level density (3.7) (i.e. the 
spectrum is transformed to a spectrum with average level spacing equal to one but 
with the same level fluctuations). We study three different potentials of the form (2.1), 
the homogeneous x4 polynomial, the homogeneous x6 polynomial and the square well. 
We consider different energies and different values of the parameters y I .  In the case 
of the x4 and x6 potentials the value of a, is taken to be equal to 0.25 (even parity 
states). For the square well we take a ,  = 1.0. 

In figure 1 we present results for the 500th eigenvalue up to the 1500th eigenvalue. 
The dots represent the values of the A3 statistic for the W K B  eigenvalues and the full 
curve corresponds to the analytical expression (4.4) calculated for the 1000th eigen- 
value. Going from the top to the bottom the ratio yl/  y 2  is equal to ;(A+ l ) ,  T ,  r(a). 
The error in the A3 statistic is calculated from its variation over the spectrum. For 
small values of L the error is much smaller than for large values of L. The reason is 
twofold. In the first place the error is reduced by the spectral averaging. In the second 
place, for large values of L the error has an important systematic component due to 
the fact that the saturation value of A3 changes by a factor fi going from the 500th 
to the 1000th eigenvalue. Since the saturation value of A3 is approximately symmetric 
around the centre of the part of the spectrum under consideration the actual error is 
less than the error due to the.non-stationarity. The large deviation in figure l ( a )  (x4) 
is a consquence only of the large deviations for the 1000th eigenvalue up to the 1500th 
eigenvalue. For the 500th eigenvalue up to the 1000th eigenvalue and for the 1500th 
eigenvalue up the 2000th eigenvalue we do  not find any deviations. 

In figure 2 we present results for the 4500th eigenvalue up to the 5500th eigenvalue. 
The potentials (also the values of y ,  and a,)  are the same as in figure 1. Now the 
saturation value of A3 only changes by a factor (l l /9)1'2.  Therefore our errors are 
mainly of statistical origin. Indeed, we find that the fluctuations of the dots around 
the full curve are of the order of the error bars. Moreover the errors are slightly smaller 
that in the E = 1000 case (note that the scale on the Y axis differs by a factor 2 ) .  All 
curves in figures 1 and 2 look very similar. However, when we take the ratio of y1  
and y 2  very different from 1 we find different shapes for the A3 statistic. Since this 
degenerate case is of little physical interest we will not discuss it any further. 
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L 
Figure 1. Comparison of the A3 statistic calculated from the W K B  eigenvalues (dots with 
error bars) and the analytical expression given in (4.4) (full curve) for the 500th eigenvalue 
up to the 1500th eigenvalue. The form of the potential is denoted in the figure (sw refers 
to square well). The ratio of y , / y 2  in ( a ) ,  ( b ) ,  ( c )  is given by+(&+ l ) ,  T, r(a), respectively. 

In figure 3 we show the effect of not taking into account the fluctuating part of the 
perimeter term in the average level density used for unfolding the spectrum. The 
parameters of the potential are equal to those of figure l (b) .  In figure 3 ( a )  the values 
of a ,  and a2 are equal to 0.25 and in figure 3 ( b )  a1 is equal to 0.25 and a2 is equal 
to 0.75. There are much larger deviations in the asymptotic region than in the 
corresponding figure in figure 1. 

The dimensional dependence of A3 is shown in figure 4. We consider the case of 
a homogeneous x4 potential and calculate the expression given in (4.4) for d = 2, d = 3 
and d = 4. The constants yi are taken equal to 1.0. The figure clearly shows that the 
value of L for which the A3 statistic saturates moves up with dimension. The 
dimensional dependence is consistent with the scaling relation (2.13). 

6. Conclusions 

In this paper we have studied the A3 statistic for systems with a potential given by a 
separable homogeneous polynomial. We have applied the analysis of Berry (1985) to 
this class of potentials and found that the A, statistic is reproduced by the analytical 
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L 

Figure 2. Comparison of the A, statistic calculated from the WKB eigenvalues and the 
analytical expression given in (4.4) for the 4500th eigenvalue up to the 5500th eigenvalue. 
The parameters of the potential are the same as in the corresponding part of figure 1.  For 
further explanation see figure 1. 

results. The dimensional and energy dependence of the A3 statistic could be derived 
by invoking only the scaling properties of the potential. The results thus obtained 
were confirmed by the detailed analysis. In order to be able to unfold the spectra 
given by the WKB approximation (which was found to be excellent) accurately, we 
had to take into account a generalised perimeter term. This term appeared to have 
important contributions when the value of the zero-point fluctuations was different 
from 0.5. After taking into account this term the values of the A3 statistic for the WKB 

eigenvalues could be reproduced satisfactorily. The dimensional dependence of the 
‘kink’ in the A3 statistic behaved according to a simple scaling relation. In higher 
dimensions the ‘kink’ moves to larger values of L. The functional dependence of the 
universal part of A3( L )  could be explained by scaling arguments both for the integrable 
and the ergodic cases. 

A number of practical consequences ensue from these results. First, the ‘kink’ is 
irrelevant in nuclear statistics due to the large dimensionality of the system. Second, 
the ‘kink’ constitutes a deviation from Poisson statistics ubiquitous for integrable 
systems, though its location shifts along the spectrum and also depends on the 
Hamiltonian. Third, the exact availability of the long-range behaviour of the A3 statistic 
for some systems may allow us to extract information from short low-lying spectra. 
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Figure 3. The A3 statistic of the 500th eigenvalue up the 1500th W K B  eigenvalue obtained 
without taking into account the perimeter term. The ratio of y , / y 2  is equal to TL In ( a )  
and ( b )  the values of the ai are equal to (0.25,0.25) and (0.25,0.75), respectively. For 
further explanation see figure 1. 

L 

Figure4. The dimensional dependence ofthe A, statistic. The full curves show the analytical 
expression (4.4) calulated for d = 2 , 3  and 4 (going from the bottom to the top). The results 
have been computed for the 100th eigenvalue and the value of y,  is equal to 1.0. 
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